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Abstract

This study explores the impact of bicycle-sharing infrastructure on urban trans-
portation. Accounting for selection bias in a matching framework, we estimate a causal
effect of the Capital Bikeshare on traffic congestion in the metropolitan Washington,
DC, area. We exploit a unique traffic dataset that is finely defined on a spatial and
temporal scale. Our approach examines within-city commuting decisions as opposed
to traffic patterns on major thruways. Empirical results suggest that the availability
of a bikeshare reduces traffic congestion upwards of 4% within a neighborhood. In
addition, we estimate heterogeneous treatment effects using panel quantile regression.
Results indicate that the congestion-reducing impact of bikeshares is concentrated in
highly congested areas.
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1 Introduction

Tailpipe emissions from transportation constitute 27% of greenhouse gas emissions in the

United States.1 The effect of automobile pollution is amplified further by increases in con-

gestion in urban areas, which exacerbate both private and public damages. Schrank et al.

(2012) estimate national congestion costs arising from time loss and wasted fuel at more than

$120 billion in 2011, while annual CO2 emissions attributable strictly to congestion are 56

billion pounds. In addition, 56 billion pounds of CO2 emissions translates to over $1 trillion

in social costs.2

In response to these concerns, government agencies have imposed highway tolls, built

high-occupancy vehicle lanes, invested in public transit infrastructure, imposed fuel economy

standards, and relied on voluntary information campaigns in an effort to reduce vehicle miles

traveled (VMTs), alleviate congestion, and mitigate the associated environmental damages.

A new mechanism to reduce urban traffic congestion that is currently gaining traction for its

purported cost-effectiveness, environmental-friendliness, and positive health impacts is the

adoption of citywide bicycle-sharing systems (bikeshares). This infrastructure provides an

alternative to driving for short trips and extends the existing network of public transit within

a metropolitan area. Further, bicycling infrastructure augments the environmental bona fides

of densely populated urban areas (Kahn, 2010). If bikeshares reduce traffic congestion, they

may provide a low-cost policy lever to reduce automobile externalities in urban areas.

Bicycle-sharing programs have seen substantial uptake in European cities such as Ams-

terdam, Paris, Copenhagen, and London, but only recently have U.S. cities adopted these

transportation systems (Nair et al., 2013).3 Of note, Washington, D.C., Minneapolis-St.

Paul, Boston, San Francisco, and New York City have installed city-wide bikeshares. It is

thus worth examining the policy importance of environmental benefits of a bicycle-sharing

program in urban areas. Specifically, we focus on metropolitan Washington, D.C.’s, Capital

Bikeshare, which was introduced in 2010. Schrank et al. (2012) show that the Washington

area ranks first in pounds per automotive commuter for CO2 emissions produced during con-

gested travel, at 631 pounds per commuter annually. This estimate, of course, ignores any

local pollutants that contribute to ambient air quality. Further, a journalist at the Wash-

ington Post notes, “Capital Bikeshare ... funded the original bikes and the docking stations

1http://www.epa.gov/climatechange/ghgemissions/sources.html.
2These estimates are the emissions arising solely from congested travel, as opposed to free-flowing traffic.
3A typical bikeshare system works as follows. A user registers for an annual, multiday, or (infra-)day

membership at one of many bikeshare “stations,” which house the bicycles not in use. The user is then given
a key, physical or numerical, to unlock a bicycle for transportation and she is allowed to return it to any
other station within the bikeshare system. The user pays according to a rate structure based on the elapsed
time of the trip.
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with federal grants earmarked for local programs that mitigate congestion and improve air

quality.”4 In particular, Capital Bikeshare leveraged federal money through the Congestion

Mitigation and Air Quality Improvement Program (CMAQ), which funds programs in air

quality nonattainment areas for ozone, carbon monoxide, and particulate matter that reduce

congestion related emissions.5 In order to assess these environmental benefits, however, a

causal link between bikeshares and traffic congestion must be established; identifying this

effect is the focus of our paper.

Specifically, we examine the impacts of introducing additional transportation options into

an existing transit network within a large metropolitan area. Focusing on the introduction

of the Capital Bikeshare program, we examine the effects of bikeshare station locations on

traffic congestion. The expansion of the bikeshare program over 2011 and 2012 allows for

identification of changes in congestion within a neighborhood over time. Bikeshare station

locations are matched with micro-level traffic data on a finely defined spatial and temporal

scale within the city. These data provide an advantageous approach to examining within-city

commuting decisions as opposed to examining changes in traffic patterns on major thruways

and arterial highways. To the best of our knowledge, this is the first paper in the economics

literature to examine the causal effect of large-scale bicycle-sharing infrastructure on motor

vehicle traffic, with implications for environmental and health benefits.

Empirically, we develop a framework to capture the effect of bikeshare systems on traffic

congestion in multiple ways. Fixed effects models controlling for time-invariant unobservables

in a neighborhood allow us to explore the effect of the bikeshare systems on traffic congestion,

while highlighting the bias from endogenous selection of bikeshare locations. Our causal

specifications, using the presence of a bikeshare station as a treatment, utilize propensity

score matching on observable socioeconomic characteristics, pre-treatment traffic congestion,

and public transportation infrastructure to mitigate the effect of selection bias. Estimates

from our preferred models indicate a 4% reduction in congestion due to the presence of a

bikeshare, which translates to roughly $24 million in private and $850,000 in public benefits

within our sample. Further analysis explores heterogeneity in the impact of bikeshare stations

through the use of quantile regression. Our results suggest that the reduction in congestion

is concentrated in areas with relatively high congestion.

In the next section, we provide a brief history of bikeshare programs and institutional

details of the Capital Bikeshare program. We then outline the relevant literature as it

4Badger, Emily. “Why DC’s bikeshare is flourishing while New York’s is financially struggling.” The
Washington Post, 1 April 2014. http://www.washingtonpost.com/blogs/wonkblog/wp/2014/04/01/why-
dcs-bikeshare-is-flourishing-while-new-yorks-is-financially-struggling/. Last Accessed: October 13th, 2014.

5Fact Sheets on Highway Provisions, http://www.fhwa.dot.gov/safetealu/factsheets/cmaq.htm. Last Ac-
cessed: October 13, 2014.
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relates to traffic congestion and environmental quality. In Section 4, we describe the data.

We present our quasi-experimental strategy and empirical models in Section 5 and discuss

matching and estimation results in Sections 6 and 7, respectively. Policy implications are

discussed in Section 8, followed by robustness checks in Section 9 and conclusions in the final

section.

2 Institutional background on bikesharing

Bikesharing programs allow members to check out bicycles from stations located in public

spaces, and return them to other stations when their ride is complete. Modern systems

generally require members to purchase a membership for a specified time (e.g., a daily or

annual membership). Members use a key to unlock bicycles at any station, and they can

return them to an empty dock at a station near their end destination. Rides that last less

than a given amount of time (typically 30 minutes) are free, while overage fees are incurred

for longer trips.

Bikesharing systems continue to grow rapidly in North America and are providing new

transportation opportunities for residents and visitors in major cities (Martin and Shaheen,

2014). Bikesharing systems are meant to encourage short to medium distance rides, ide-

ally complementing existing public transit, providing an alternative to walking to and from

a major transit center, or linking two routes that do not overlap (Pucher, 2005). Shaheen

(2012) proposes some potential benefits of bikesharing including increased mobility, consumer

transportation cost savings, reduced transportation infrastructure costs, reduced traffic con-

gestion, reduced fuel use, increased use of public transit (Martin and Shaheen, 2014), public

health improvements, and greater environmental awareness.

The Washington, DC, Capital Bikeshare program was introduced in the fall of 2010, 
beginning with 400 bicycles and 49 stations and quickly growing to over 100 stations and

more than 1,000 bicycles by the end of 2010. The growth in ridership, shown in Figure 1
relative to the trends in the number of stations in use between 2010 and 2012, reflects the

overall increase in cycling as a transport mode in the metropolitan DC area. According to
the 2012 American Community Survey, the share of bicycle commuters in DC in 2012 was

4.1%, up from 3.1% in 2010 and 1.2% in 2000.

Between 2010 and 2012, the first 3 years of the program, the Capital Bikeshare expanded

dramatically. Figure 1 shows that the number of stations in use each month increased from

104 to nearly 190 at the end of 2012 and ridership increased by almost 100,000 trips between

the peak in summer 2011 and summer 2012. The expansion in stations over this time period

allowed the Capital Bikeshare system to double the number of bicycles in service, from 82
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stations in October 2010 to 168 in October 2012. At its monthly peak, in September 2012, 
all users spent a combined 65,000 hours on Capital Bikeshare bicycles. In addition, Figure 
2 indicates that the amount of bike lanes in the DC metropolitan area remained fairly 
constant over the time of our study so we are able to concentrate on the bikeshare program 
itself, rather than impact of changes in accompanying infrastructure.

3 The Economics of Traffic Congestion

Recently, the economics literature on transportation has focused on motor vehicle drivers’

behavior. Particularly, research has characterized consumer responses to changes in the

price of gasoline as well as the incidence and distributional implications of taxing gasoline

to curb its negative externalities (Bento et al., 2009; West and Williams III, 2005, 2007).

This research informs the policy-relevant debate concerning the optimal mechanism (e.g.,

Pigouvian taxation of gasoline) to reduce environmental damages that arise from motor

vehicles. In addition, researchers have examined how variability in gasoline prices affects

speed and congestion on freeways (Burger and Kaffine, 2009), carpooling behavior (Bento

et al., 2013), and the substitutability of other modes of public transportation (Currie and

Phung, 2007; Spiller et al., 2012). While this research sheds light on consumers’ decision-

making process within the existing transportation infrastructure for motor vehicles, it leaves

open the question of how consumer behavior changes with the addition of a new, purportedly

environmentally friendly, transportation option.

The effect of adding a bikeshare network to an existing transit system can be examined

similarly to the introduction of a rail line, for example, as it effectively reduces the relative

cost of transportation. This additional transportation option is particularly relevant in urban

areas where public transit is more cost-effective and may, in the short run, circumvent the

fundamental law of road congestion (Duranton and Turner, 2011), which posits that VMTs

increase proportionally with additional vehicle lanes and exhibit no response from additional

public transit service. Among research at the intersection of motor vehicle traffic and public

transit, no studies have provided an estimate of the impact of bicycle-sharing programs on

traffic congestion nor their ability to augment existing public transit in an urban area.

A parallel literature explores the investment in public transit infrastructure and finds

that despite garnering a large fraction of public support, only a small number of commuters

actually use public transportation. As such, several studies have concluded that investment

in public transit does little to reduce traffic congestion and thus fails to reap the corre-

sponding environmental benefits (Rubin et al., 1999; Winston and Langer, 2006; Winston

and Maheshri, 2007; Duranton and Turner, 2011; Lawell et al., 2016; Beaudoin and Lawell,
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2016). Specifically, Beaudoin and Lawell (2016) find no evidence that increased transit sup-

ply improves air quality at the margin, conditional on existing urban travel regulations.

Still, Beaudoin et al. (2014) provide evidence that a 10% increase in public transit capacity

reduces traffic congestion by 0.8%, though this effect is stronger in densely populated cities.

Further, Anderson (2014) shows that commuters most likely to support public transit are

those who would otherwise commute along highly congested motorways. Using a transit

strike in Southern California as a natural experiment, he finds that average highway travel

delays increase by about 0.2 minutes per mile, a 47% increase. The evaluation of a bikeshare

system’s effect on congestion is particularly relevant within this context as it provides a

low-cost alternative to larger capital investment and could increase the efficiency of existing

transit options by improving accessibility in a metropolitan area.

The literature on the local environmental effects of congestion is somewhat sparse in com-

parison to the research on public investment. Parry et al. (2007) provide an extended review

of the ways in which motor-vehicle trips produce environmental and public externalities,

including the cost-effectiveness of policies designed to curb these externalities. Overall, the

analyses summarized in Parry et al. (2007) indicate that the local environmental effects of

traffic congestion are substantial. More relevant to our context, Beaudoin et al. (2015) survey

the literature on how traffic congestion maps to emissions, while Barth and Boriboonsomsin

(2009) and Berechman (2010) show specifically that lower-speed vehicle transportation emits

more greenhouse gases. Thus, policies designed to reduce congestion would have the highest

marginal impact on greenhouse-gas mitigation from the transportation sector.

Additionally, several papers utilize novel identification strategies to uncover the forces

that map transportation policies to environmental and health outcomes. Specifically, Cutter

and Neidell (2009) examine the effect of “Spare the Air” information campaigns, in which

commuters are asked to voluntarily forgo motor vehicle trips on days when local ambient

pollution levels are dangerous. This voluntary mechanism, designed to mitigate the incidence

of exposure to ozone in central California, was found to reduce traffic volume and increase

public transit usage. Sexton (2012), however, provides an empirical counterpoint to Cutter

and Neidell (2009) by examining general equilibrium effects induced by free-fare days for

public transportation. Sexton shows that free-fare days increase motor-vehicle traffic, as

well as the corresponding local pollution, due to an unintended reduction in relative costs of

driving. In contrast, Chen and Whalley (2012) show that the introduction of an urban rail

line in Taipei induced a 5 to 10% reduction in carbon monoxide, suggesting a substantial

decrease in tailpipe emissions. Finally, Currie and Walker (2011) study the effect of reduced

congestion induced by the introduction of E-ZPass on infant mortality and birthweight. They

provide convincing evidence of the positive public health spillovers of reduced congestion on
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local environmental quality.

Overall, research in this vein suggests that a reduction in congestion improves local

air quality; however, there may be perverse incentives for commuters that work against

the desired social optimality of policy designs. In this paper, we build on this literature

by examining an altogether different type of transportation policy with implications for

environmental and health outcomes through its effect on traffic congestion. Although support

for bicycle-sharing programs often touts environmental benefits, ex ante predictions of the

effect of bicycle-sharing programs on traffic congestion are mixed.

4 Data

4.1 Transportation Choice Data

The Capital Bikeshare, which began in September 2010, serves the metropolitan Washington,

D.C., area. It is funded publicly by the District of Columbia, City of Alexandria, and

Arlington County and operated by a private company. In the fall of 2013, Capital Bikeshare

expanded to Montgomery County in Maryland. Uptake in ridership and the number of

station locations increased substantially over its first three years of operation. Figure 3

shows the number of rides initiated at Capital Bikeshare stations over our study period,

demonstrating an obvious increase in ridership, particularly during peak hours.

We are first concerned with the locations of bikeshare stations, analyzing the impact

arising from the existence of stations. The geographic locations of these stations are publicly

available from Capital Bikeshare. Our data include 165 stations located throughout the

metropolitan area. It is important to note that some bikeshare stations were established

after the first period of our dataset, generating observations of traffic congestion in the same

block group before and after a station is established. In Table 3 we present the number

of stations in operation during different months over the range of our sample as well as

the number of treated block groups. Of the block groups that have a bikeshare station

established at some point, 29% have a station established after the first time period in our

analysis.

A key component of our analysis is access to traffic data that is finely disaggregated on

both a spatial and temporal scale. Furthermore, we use observations of city streets and

arterial roads, rather than only major highways. INRIX6 traffic data were obtained through

partnership with the CATT Lab at the University of Maryland, College Park. Archived real-

6INRIX is a private company that collects information about roadway speeds in real time from anonymous
mobile phones, connected cars, trucks, delivery vans, and other fleet vehicles equipped with GPS locator
devices.
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time information on traffic speed by road segments was obtained through the Vehicle Probe

Project (VPP) Suite within the Regional Integrated Transportation 5 Information System

(RITIS). The unit of observation for raw speed data is a road segment that is identified by

its Traffic Message Channel (TMC) code and exhibits a much richer geographic span than

standard traffic monitors that capture flow at various points along major highways. Studies

of the quality of INRIX data (e.g., Zhang et al. (2015), Coifman and Kim (2013)) indicate

that it is a reliable source for traffic conditions, particularly during times of high traffic

volume such as the morning commute.

Each TMC road segment is characterized by the latitudinal and longitudinal coordinates

of its start and end points and tends to be less than one-half of a mile, with a mean and

median length of 0.37 and 0.24 miles, respectively, in our sample. These road segments cover

a more comprehensive range of within-city traffic patterns than was covered in previous

research. To manage the spatial nature of our dataset, we construct road midpoints as

the geographic midpoint between start and end points. These midpoints define a road

observation.

Recall that the primary variable of interest is traffic congestion. We construct a normal-

ized metric of traffic congestion by comparing observed speed to a reference speed (defined

by INRIX) that is a typical historical speed for a road segment. Congestion for a particular

segment is defined as follows:

CONGj =
SpeedR

j

SpeedO
j

, (1)

where SpeedR
j is a constant reference speed for free-flowing traffic on road segment j deter-

mined by the prevailing speed limit and historical speed patterns and SpeedO
j is the observed

speed at any point in time. Given this definition, congestion is decreasing in observed speed.

We measure congestion using speeds aggregated to 30-minute intervals, focusing on morn-

ing rush-hour commuting times from 6:00 am through 10:00 am. In addition, our analysis

includes observations from April, May, September, and October of 2011 and 2012, resulting

in 1,384 time periods across 2,790 road segments. The start date for our dataset is based

on implementation of the bikeshare program and installation of stations. Specific months

are chosen to capture times of the year in which cycling is a reasonable commuting option

and commuters have typical work schedules. Summary statistics for our dependent variable

congestion are shown in Table 1.
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4.2 Census Block Groups

An important component of our analysis is the spatial nature of the data, as bikeshare

stations and speed (and thus congestion) are observed at particular geographic coordinates.

It is therefore necessary to establish a geographic link between the variables.

We use U.S. Census block groups as the geographic unit of observation. Census block

groups make up the second smallest geographic area defined by the U.S. Census. The

smallest designation, census blocks, is unsuitable for the analysis because of our treatment

of road segments. Because we use the midpoint of each road as the designation of its

location, census blocks are small enough that a road may pass through several blocks but,

of course, its midpoint is in only one. This problem is largely alleviated by using a slightly

larger geographic designation. In addition, the size of census blocks makes it likely that

individuals move across blocks for their commuting choice (e.g., an individual might walk

to a bikeshare station in a bordering block or bike through a block that borders that of the

usual car commute), so that such a small area may not accurately capture the relationship

of transportation mode choices. Our study area includes 305 block groups.

The question becomes one of the relationship between aggregate demand for each mode

of transportation in a particular block group. Through the use of GIS software, bikeshare

stations are easily linked to the block group in which any particular station is located.

For congestion data, we aggregate to the block group level by taking mean congestion for

all road segment midpoints located within a particular block group. Figure 4 shows block

group boundaries of the study area with road segment midpoints overlaid. Bikeshare stations

(as of the final time period of our sample) and Metrorail stations are displayed in the same

geographic boundaries in Figure 5. Our sample includes 560,798 observations of block group-

time combinations. As shown in Table 1, 15.9% of our sample observations are block groups

with bikeshare stations.

4.3 Adjacent Block Groups

As an additional component in the empirical analysis, we consider the impact of bike stations

that are close to road segments, but perhaps are in different census geographies. Individuals

are not confined to a particular census block. An individual may, for example, forgo a car

trip and use a bikeshare station in an adjacent block group. It is therefore possible that

the impact we are trying to identify is not confined solely to transportation demand within

the same block group. In addition, geographic space is continuous and census block groups

are somewhat arbitrary to individuals. Thus we are concerned about stations that may be

located in different block groups, though they may be very close to the area of measured
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road congestion. For each block group, we measure the stations that are in neighboring block

groups (those that share a border). We also measure the stations that are in neighboring

blocks, obtaining a better measure of those stations that are close to measured congestion,

but perhaps just across a block group border. Across our sample of block groups and time

periods, 48% of our observations have a bikeshare station in a bordering block group, and

25.9% have a bikeshare station in a bordering block.

Table 2 displays summary statistics for our bikeshare station count measures. The vari-

able Station Adjj denotes the number of bikeshare stations in all block groups that share

a border with block group j. Similarly, Stations Kadjj denotes the number of bikeshare

stations in all blocks that share a border with block group j. Summary statistics show that

capturing bikeshare stations in adjacent locations could be considerably important. Note

also that relatively few observations have multiple stations. While Table 2 summarizes bike-

share station counts based on observations in the data, it is also worth considering whether

block groups had a station at any point over the sample period. Of the 416 block groups,

19.7% have a bikeshare station at some point in time. Alternatively, 56% of block groups

have a station within a neighboring block group at some point in time and 31.5% have a

station within a neighboring block.7

5 Empirical Strategy

Our general empirical approach seeks to identify a causal effect of bikeshare programs on

traffic congestion. Existence of a bikeshare station may impact traffic congestion in several

ways. Automobile drivers may opt to use the bikeshare to avoid traffic congestion, or any

other utility increase associated with biking relative to driving, including potential time

savings. A bikeshare option may also extend the existing network of public transportation,

again making driving a less attractive option. If all bikeshare users are commuters that have

switched from individually driving, one would expect a decrease in congestion as the result

of fewer cars on the road. Although, if all bikeshare users previously commuted via the

city’s rapid transit or bus system, or are simply using it to augment a commute that already

takes place via public transportation, one would expect no decrease in automobile traffic.

At the same time, it could be the case that additional bikeshare users on the road could

interfere with automobile travel and increase traffic congestion, particularly if the increase

in riders is due to commuters substituting away from other modes of public transportation.8

7These percentages are slightly larger than those in Table 2 since some block groups are treated for only
a portion of the dataset.

8A 2012 survey of Capital Bikeshare members provides evidence that bikeshare users may not be
predominatly substituting from driving, but there is a considerable reduction in miles driven among
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Our analysis seeks only to estimate the combined impact of these mechanisms on traffic

congestion. Rather than structurally modeling transportation choices, we take a reduced

form approach to identifying changes in congestion as a result of the bikeshare program.

In this section, we first develop a series of models controlling for unobservable effects at

the block group level to assess the relationship between traffic congestion and the availability

of bikeshare stations. Within these models, we note the potential bias induced by nonrandom

siting of bikeshare stations. To correct for this, we develop a treatment effect model that

eliminates this bias using propensity score matching. Specifically, we use propensity score

matching to generate control and treatment samples that can be used with standard panel

fixed-effect estimation. Within the latter framework, we estimate an average treatment

effect on the treated (ATT ) of the bikeshare on congestion. We also explore heterogeneity

in the treatment effect using quantile regression while controlling for unobserved spatial and

temporal heterogeneity.

5.1 Panel Data Model

To estimate the impact of the bikeshare program on traffic congestion, we take a reduced form

approach and estimate several different linear equations. The first general model examines

the relationship between the existence of bikeshare stations and the average level of traffic

congestion in a block group. We estimate the natural log of traffic congestion as

lnCONGjhdmt = α + δj + νh + µm + υt + γRaind + βStationjhdmt + εjhdmt, (2)

where CONGjhdmt denotes average congestion among all road segments with midpoints in

block group j during half-hour period h, day d, month m, and year t. The variable Raind is

an indicator variable equal to 1 if precipitation is observed on that day.9 The parameters δj,

νh, µm, and υt represent block group, half-hour period, month, and year dummy variables,

respectively. The variable Stationjhdmt indicates whether a station exists in block group j

in time period {h, d,m, t}. We are therefore primarily interested in the coefficient β.

Two additional specifications each include an additional variable to indicate the presence

of a station in an adjacent area. These specifications use the same definition of average

congestion as (2) and are otherwise identical except for a single additional variable. In the

second specification we include Station Adjjhdmt = 1 if there is a bikeshare station in an

member of the program. The report can be found at http://www.capitalbikeshare.com/assets/pdf/cabi-
2012surveyreport.pdf.

9This specification assumes no variation in weather across block groups. In addition, we are unable to
obtain historical weather observations at half-hour periods so there is no variation in this variable over the
course of a single day.
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adjacent census block group. In the third specification, Station Kadjjhdmt = 1 if there is a

bikeshare station in an adjacent census block.

We refer to the above empirical framework, including specifications with variables to

indicate nearby stations, as the fixed-effects panel data (FEPD) model.

5.2 Treatment Effect Model

In our empirical framework we recognize the potential selection bias when examining the im-

pact of the existence of bikeshare stations. It is likely the case that stations were established

in areas of high congestion for two reasons: these are the locations that are most in need

of bikeshare stations from the city’s perspective and these are likely the locations with the

highest demand for bikeshares. Alternatively, stations require ample sidewalk space and may

be best suited to areas of residential and commercial concentration, rather than commuting

corridors. In either case, it is well known that endogenous selection of treatment (i.e., bike-

share stations) of this nature will generate biased estimates. Therefore, we use propensity

score matching techniques to properly identify the causal impact of bikeshare stations. The

following section outlines our approach to and justification for matching.

Define treatment status T to be equal to 1 (treatment) if a block group contains a station

and equal to 0 otherwise (untreated). Define the potential outcome10 in the treatment

condition as CONG1 and the potential outcome in the untreated condition as CONG0.

The goal of the analysis is to identify the average treatment effect on the treated (ATT ),

ATT = E[CONG1 − CONG0 | T = 1]. (3)

The econometric strategy discussed in the previous section essentially estimates

E[CONG1 | T = 1]− E[CONG0 | T = 0]. (4)

Equation (4) is only an unbiased estimator of the ATT if E[CONG0 | T = 1] = E[CONG0 |
T = 0], which is unlikely to be true given, for example, the decision to locate bikeshare

stations in areas of high congestion. To the extent that this is true, we expect our FEPD

estimates to be biased upwards.

The matching technique we employ is based on the more plausible assumption that

E[CONG0 | X,T = 1] = E[CONG0 | X,T = 0]. (5)

10In the empirical analysis that follows, we use the natural log of congestion as the outcome variable.
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Equation (5) states that observed E[CONG0 | X,T = 0] offers a proper counterfactual

for the unobserved E[CONG0 | X,T = 1]. By conditioning on the set of variables X,

we can create a counterfactual sample of block groups with no stations (untreated) that are

observably similar to those that do have a station (treated). In addition to observed variables

X as matching covariates, we impose the restriction that no control block groups are adjacent

to a treated block group. This final restriction is an effort to avoid a violation of the stable

unit treatment value assumption (SUTVA). Rather than matching on the multidimensional

set of covariates X, we use propensity scores, P (X), which denotes the predicted probability

that a particular block group will have a bikeshare station conditional on X.

Note that we combine the identifying power of the FEPD estimator with that of matching,

following the approach of Ho et al. (2007) and Ferraro and Miranda (2014).11 The fixed

effect specification alone controls for any congestion shocks that are time-invariant or specific

to a particular block group. Our matching strategy becomes important in the context of

the implicit assumptions of the model. The econometric framework assumes homogeneous

treatment effects and similar time trends across block groups. By matching observations

based on block group descriptors and pre-treatment congestion, we make these assumptions

more plausible. Thus we use propensity score matching to process the data and generate a

set of control observations that are similar to the treated block groups. We then apply the

FEPD estimator to the matched samples to obtain unbiased estimates.

6 Pre-Processing Data Using Propensity Score Match-

ing

Based on the potential selection problem in previous specifications, we employ matching

techniques in an attempt to obtain unbiased coefficient estimates and identify a causal im-

pact. In the context of our quasi-experimental approach, recall that selection into treatment

may occur if the decision to establish a bikeshare station in a particular location is depen-

dent on the level of congestion in that location. Our matching technique therefore seeks to

establish a set of control block groups with no bikeshare stations that are similar to those

block groups that do have bikeshare stations, so that our analysis has a sound counterfac-

tual. We then estimate linear regressions identical to the specification in Equation (2) on

our constructed sample of matched observations.

Our matching approach rests on the policy guidelines that determined the location of

bikeshare stations. Without access to an explicit set of rules or methods to site stations,

11See Smith and Todd (2005) for an extensive discussion of this approach.
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there is reason to believe that the siting process depended on both socioeconomic variables

and current traffic congestion. In an August 2010 application for funding from the Trans-

portation Investments Generating Economic Recovery II (TIGER II) Competitive Grant

Program administered by the U.S. Department of Transportation, the Metropolitan Wash-

ington Council of Governments indicated a criterion for expanding the Capital Bikeshare

conditional on improving transportation options for underserved populations. In particular,

the report reads, “[Capital Bikeshare] will bring an affordable, convenient, and healthy travel

option directly to 30% of the region’s households and population and provide access to 45%

of the region’s jobs, particularly in areas where low-income and/or transit-dependent popu-

lations are concentrated.”12 However, a policy report in Georgetown’s Public Policy Review

shows that bikeshare stations are located predominantly in wealthy areas of metropolitan

Washington with stations located sparsely throughout impoverished neighborhoods.13 Since

station locations are not independent of socioeconomic neighborhood characteristics nor

transit accessibility, this suggests that a matching approach along socioeconomic and pre-

treatment traffic patterns is a viable strategy to reduce bias from any nonrandomness in the

siting of a bikeshare station.

The set of covariates X used to estimate and predict propensity scores is shown in Table

4. We use block group socioeconomic data to help predict the probability that a station is

sited in a particular block group. We calculate mean congestion and the standard deviation

of congestion in two months prior to the bikeshare program being implemented, in an effort

to match the trend in the dependent variable.

We use socioeconomic and pre-treatment traffic patterns as matching variables based

on policy makers’ stated objectives. Since the bikeshare program operates as part of a

larger transportation system and may act as a substitute or complement to existing public

transportation, however, there is reason to believe that additional variables my factor into

the decision to locate a bikeshare station in a particular location. As additional sources of

endogenous station siting, we examine the role of the Washington Metropolitan Area Transit

Authority Metrorail, a rapid transit system, and Metrobus, a city-wide bus system. We also

measure the aggregate distance of dedicated bicycle lanes, an obvious complement to the

bikeshare system.

Our analysis proceeds with two separate matching approaches. The first approach follows

12A Regional Bike-sharing System for the National Capital Region, Metropolitan Washington
Council of Governments, August 23, 2010, p. 12. http://www.mwcog.org/uploads/committee-
documents/bV5YWlxe20100820155649.pdf. Last accessed, October 13, 2014.

13Johnson, Kristine. “Capital Bikeshare in low-income areas: The question no one is asking.”
Georgetown Public Policy Review, Domestic Policy, Energy & Environment. September 2, 2014.
http://gppreview.com/2014/09/02/capital-bikeshare-low-income-areas-question-one-asking/. Last accessed,
October 13, 2014.
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from the explicit objectives of the bikeshare program and includes socioeconomic variables

and pre-treatment traffic patterns. We refer to this as matching specification 1. A second

propensity score matching approach, matching specification 2, includes the distance to the

nearest Metrorail station, the number of Metrobus stops in a block group, and total miles of

dedicated bicycle lanes, in addition to the full set of covariates in matching specification 1.

While our dataset includes observations across block groups and time periods, our match-

ing approach concerns only block groups. This is based on the following assumption: given

that a station is to be established in a particular block group, the timing of its establish-

ment is exogenously determined. Note that the decision to build a station is not a decision

each period, but instead a onetime decision to locate a semipermanent station in a block

group. There are instances of removal of a station in our dataset, but no instances of removal

followed by re-establishment.

We construct a subsample of the full dataset of treated block groups and untreated block

groups, in which the untreated block groups are chosen as the most observationally similar to

the treated block groups. To accomplish this we use a block group’s propensity score P (X),

the probability that a block group has a station conditional on the set of observed covariates

X. We estimate a probit model to predict P̂ (X). Due to the desire to match on covariates

before treatment, we use publicly available U.S. Census data from 2009 to construct X.

To define a match, we use caliper matching techniques to find a valid control block

group. The caliper approach differs only slightly from nearest neighbor matching. With

caliper matching, a treated observation may have more than one corresponding control block

group. This allows us to take advantage of multiple control observations that may all be

very good counterfactuals, rather than having to choose only the closest. Caliper matching

also removes outliers and inliers from the dataset. Treatment observations for which there is

no untreated observation with a propensity score within the caliper range are dropped from

the sample. In contrast, nearest-neighbor matching forces the best match, regardless of how

close of a match it may be. The choice regarding the size of the caliper is left primarily to

the researcher. As its objective is to remove poor matches, we use a relatively small caliper

and define its size as 0.05 times the observed standard deviation of the predicted propensity

scores. This is equivalent to a caliper equal to 0.0083.14 We address the somewhat arbitrary

choice of caliper size in our robustness checks. To avoid issues that arise from having to

choose a particular order of matching (Rosenbaum, 1995), we match with replacement in all

specifications.

14Alternatively, nearest neighbor matching results in a median absolute difference in the predicted propen-
sity score of matches equal 0.025, with matches that differ up to 0.276 in predicted propensity scores.
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6.1 Matched Samples

We estimate propensity scores as the basis for matching. The use of congestion as a covariate,

however, forces us to consider the time periods allowed in our sample. To avoid matching

on our dependent variable, only observations from 2011 onward are used in the estimation

sample. In this way, our treatment and control groups are matched based on observed

characteristics of the block groups, as well as congestion before the possibility of treatment.

The drawback to this approach is that we lose identification power in some cases derived

from observing the same block group with and without a station.

Coefficients from the probit regressions indicate that among the socioeconomic variables,

Med Inc, Per Educ, and Per Own are significant predictors in the first matching specifi-

cation.15 The pre-treatment congestion variables show no statistically significant impact in

predicting station locations. In the second matching specification, Med Inc and Per Educ

are again statistically significant. Each of the three additional variables, Dist to Metro,

Agg BL Length, and Bus Count, are statistically significant. To assess the performance

of our matching technique we analyze block group descriptors in the treatment and control

samples. The objective of matching is to obtain balanced samples in which covariates are

similarly distributed across samples. We refer to the set of unmatched observations as the

full sample.

6.2 Covariate Balance

Looking first at the full sample, Table 5 shows mean covariate values for block groups with

bikeshare stations (treatment group) along with mean covariate values for block groups

without stations, those that would act as counterfactuals using the full sample. For each

covariate, we conduct a hypothesis test with the null hypothesis that both means are the

same. The p-value from each of these tests is reported in the third column. In addition, we

perform a Kolmogorov-Smirnov test (K-S test) for each covariate. The K-S test examines the

empirical distribution functions of the treatment and control observations to test whether

the samples were drawn from the same distribution. Again, the p-values correspond to a

test with a null hypothesis that the treatment and control samples were drawn from the

same distribution. Finally, we also report the ratio of sample variances of the two samples.

From Table 5, the p-value and K-S p-value suggest that sample selection bias likely exists

in the full sample. With the exception of Sq Mi and Pop, a test of means leads us to reject

the hypothesis that sociodemographic covariates have identical means across the treatment

and control samples at the 5% significance level. Similar results are clear for the K-S test

15Full estimation results are available from the authors upon request.
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of the covariate distributions. Pre-treatment congestion is already fairly well balanced for

May and September, which is expected in light of insignificant estimates in our treatment

prediction model. Finally, variables indicating alternative public transportation options are

poorly balanced. Identical conclusions of imbalance are drawn from the K-S test.

Table 6 displays similar statistics for covariate balance in the first matched sample. The

full sample includes 56 treated block groups. Using a caliper of 0.05σ, where σ is the standard

deviation of predicted propensity scores, the number of treated block groups decreases to

39, as block groups are dropped from the analysis for not having a sufficiently close match.

Since caliper matching was done with replacement, these block groups are matched to 36

unique control block groups from the full sample control of 334. While a comparison of

means suggests fairly well-balanced samples, formal hypothesis tests support considerable

improvement from matching, as mean comparison p-values are insignificant for all covariates.

The K-S tests show similar results and offer additional support for balanced samples. The

variables House Age and Sq mi continue to be significantly different, though these variables

were insignificant in propensity score estimation. Variance ratios show modest improvement

beyond the full sample. Balance on pre-treatment congestion measures also improves. In

general, results suggest that our matching approach is effective at balancing covariates across

treatment and control samples, thus reducing any bias that may be present in estimation.

Covariate balance from our alternative matching specification, which includes covariates

indicating other public transportation options, is shown in Table 7. Note that prior to

matching balance on the three transportation infrastructure covariates is extremely poor.

Examination of the matched samples shows that they are balanced well, as we are unable

to reject different means and different distributions, respectively. However, matching on the

additional covariate leads us to lose balance (though not to the point of significant differ-

ences) on most of the other covariates. The variables House Age and Sq mi, however, are

again significantly different in mean and distribution across treatment and control. Over-

all, matched samples remain fairly well-balanced, particularly on significant predictors, and

indicate the efficacy of our propensity score matching approach.

7 Results

7.1 Standard Errors

In all estimated models we cluster standard errors, though we remain agnostic regarding

whether standard errors should be clustered based on block groups or time periods, i.e.

spatially or temporally. The proper level for clustering should be determined based on cor-
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relation among regressors and correlation among the errors within a cluster. Our treatment

variable, siting of a bikeshare station, is highly correlated with block group since there are

few instances of removing stations from locations. Given the nature of the bikeshare pro-

gram, treatment is also correlated with time since many of the bikeshare stations were built

as part of major expansions of the program. In considering the error term, there is reason

to expect some temporal correlation in congestion. However, the temporal portion of our

panel is not a true time series, as a subsequent period could be the next half-hour period, the

next day, or the next month. Of course, one may also expect spatial correlation in the error

term at any time period, suggesting that clustering on time is the proper specification. In

the results that follow, we report standard errors robust to clustering on time and standard

errors robust to multi-way (time and block group) clustering.16

7.2 FEPD Estimates

Results from estimation in the fixed effects panel data framework are reported in Table 8.

All estimates contain block group and time fixed effects as outlined earlier. In addition, we

run weighted least squares estimation, weighting on the aggregate road mileage in a block

group.17 The following estimates should be interpreted in light of the previously discussed

potential for biased estimates. The FEPD model does not account for any endogenous

selection into treatment and the nature of station siting suggests an upward biased in the

estimated coefficient on the Station variable.

Estimates in Table 8 offer weak evidence for the impact of the bikeshare program. Only

the second specification shows a congestion-reducing impact of the presence of a station,

with a significant effect when controlling for stations in adjacent block groups, though the

coefficient is insignificant when standard errors are clustered at the block group level. The

coefficient in Column 2 is interpreted as a 0.34% decrease in a block group’s congestion.

Recall that there is reason to expect these estimates to be biased upwards due to the siting

of bikeshare stations. Note also that we find positive significant impacts of stations in

adjacent areas. We will return to an analysis of these coefficients in a discussion of results

from our matched regression.

The FEPD model is presented as a baseline to highlight the expected bias generated by en-

dogenous selection of station locations. Therefore, we place little confidence in the marginal

impacts discussed in this section. In the following section, estimates from a treatment effects

16Standard errors clustered on block group alone are omitted. They are consistently close to, but less
than, multi-way clustered standard errors.

17We use weighted least squares since there is considerable variation in the number of observations used
to aggregate congestion in each block group.
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model that uses propensity score matching demonstrate the importance of controlling for the

endogenous selection of station locations.

7.3 Matched Samples Estimates

Before turning to regression results using samples developed from propensity score matching,

we provide suggestive evidence of a treatment effect in Figure 6. Controlling for block group

fixed effects, we plot the trend in congestion over time, in which time is defined as number

of periods before or after a bikeshare is installed in a block group. We separately estimate

trends for treated observations before and after treatment, and estimate similar trends for

the matched block groups. The gray line shows the trend for treated block groups, along

with 95% prediction intervals. Note a drop in congestion after treatment. The congestion

trend for control observations, denoted with the dark line, indicates very little change after

treatment. Neither trend has a statistically significant slope. While congestion levels are not

significantly different across treatment and control groups, Figure 6 suggests some impact of

treatment. We explore this congestion reduction more formally with model estimates below.

To put congestion reduction in context, consider a 1.0% reduction in traffic congestion.

Relative to mean congestion in our sample of 1.23, for a road segment with a reference speed

of 40 mph, this change in congestion corresponds to a change in actual speed of 0.98%.

Alternatively, a 1% change in congestion corresponds to a reduction from median congestion

to the 47th percentile.

Average treatment effect on the treated (ATT) estimates, reported in Table 9, are neg-

ative and statistically significant across specifications when standard errors are clustered on

time. The impact of the presence of a station is interpreted as a decrease in congestion of

1.8% in our preferred specification in which we control for stations in adjacent block groups.

This estimate is significant under both cluster specifications.18 Coefficient differences from

the FEPD estimates are significant at the 1% level for all three specifications. Our results

indicate that the presence of a bikeshare station reduces traffic congestion. One conjecture

is that this is the result of substitution away from automobile commutes. In addition, we see

that non-random siting of stations is an important consideration in measuring the impact of

the bikeshare program. Considerably larger negative impacts in the matched sample suggest

that stations may be located in high-congestion areas and are thus positively correlated with

traffic congestion. With propensity score matching, we remove block groups that were pre-

viously serving as poor counterfactuals and identify a causal relationship between bikeshare

18Reported standard errors do not account for the fact that propensity scores are predicted. However, we
calculate bootstrapped standard errors that do account for the variance of predicted propensity scores. The
small increase in standard errors is small enough to retain statistical significance.
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stations and reductions in traffic congestion.

From the coefficients on Station Adj and Station KAdj, our results indicate a congestion-

increasing effect of stations in neighboring geographic areas, slightly larger than the di-

rect congestion-reducing impact. A potential explanation for these positive coefficients is a

spillover effect, in which there is substitution from adjacent block groups among drivers that

seek to avoid bike traffic.19 Thus the increase in congestion could be the result of car traffic

that would otherwise have been in a different block group. Note that the estimated impact

of a station in a neighboring block group is larger than that of a station in a neighboring

block. This may be the result of using only an indicator variable for the presence of stations

when the distribution of the number of stations in an adjacent block group is more positively

skewed than the number of stations in an adjacent block. Still, these results suggest that the

geographic spillover of traffic due to the presence of bikeshare stations could be a significant

factor in analyzing traffic congestion impacts. We discuss these impacts further below. In

requiring that our control sample is made up of block groups with no adjacent treated block

groups, we rule out the possibility that this effect is the result of endogenous concentration

of stations.

Table 10 reports results from estimation using samples matched on variables denoting

other public transportation options, as well as the previously used set of covariates. Estimates

indicate a congestion-reducing effect that is considerably larger than that of the baseline

model. As expected, the siting of bikeshare stations within close proximity to Metrorail

stations potentially implies close proximity to congested commuting areas and thus generates

an upward bias in the unmatched estimates. A similar logic applies to stations in areas with

a high volume of public bus commuting. Based on our modified matching specification,

results indicate that bikeshare stations reduce congestion by approximately 4%. Estimates

are robust to different standard error cluster specifications.

Given the additional variables in our matching approach, the estimated coefficients on

Station Adj and Station Kadj shrink and become substantially smaller than the coefficient

on Station. This suggests the possibility that the large positive impact of adjacent treatment

in the first matching specification may be the result of spatial correlation between bikeshare

locations and other public transportation. We further explore the effect of adjacent treatment

in the next section, before discussing robustness checks.

19Evidence of similar spatial substitution among automobile drivers as a response to traffic policy can be
found in Wolff (2014).
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7.4 Treatment in Adjacent Locations

We estimate two additional specifications to examine the impact of having a bikeshare sta-

tion in close proximity but outside of the block group. First, recall that in the propensity

score matching step we avoid violating SUTVA by restricting the set of potential control

observations to block groups that are not adjacent to treated block groups. Here, we drop

that restriction and force each treated block group to have at least two control matches: one

block group that is adjacent to a treated block group (block) and one block group that is not

adjacent to a treated block group (block). While this may cause concern in estimating the

impact of a bikeshare station, it offers an improved estimate of adjacent treatment since our

sample now includes as controls untreated observations that are adjacent to a treated block

group. We match on the full set of covariates and find a statistically significant coefficient

on the variable Station of −0.0288 when controlling for adjacent block group treatment and

−0.0289 when controlling for adjacent block treatment, both only slightly smaller than our

baseline specification. Full results are shown in Table 11. More importantly, the coefficients

on Station Adj and Station Kadj fall to 0.0045 and 0.0047, respectively, and are insignifi-

cant when standard errors are clustered on both time and block group. Better identification

indicates that there is little or no congestion spillover from adjacent treatment.

Estimates in our main results suggested a congestion-increasing spillover effect due to

a bikeshare station in a neighboring location. Identification in that scenario is based on

congestion levels in treated block groups that are adjacent to a treated block group relative

to other treated blocks that are not adjacent to a treated block group. Moreover, our

propensity matching technique does not address this portion of identification. Bikeshare

stations tend to be more densely located in places with heavy commutes. This clustering of

stations creates a spatial distribution of stations in which those block group that are treated

are more likely to also have a station in an adjacent block group. In our main results, positive

coefficients on Station Adj and Station Kadj are largely driven by this spatial correlation.

It is also important to note that our definition of adjacent treatment is based on bound-

aries of blocks and block groups. These entities vary in size and shape, and may be prob-

lematic in capturing spatial relationships. We therefore redefine adjacent treatment as equal

to 1 if there exists a bikeshare station with r kilometers of the block group. We estimate

the model for various values of r, ranging from 0.5 − 3km. Results are shown in Table 12

The coefficient on Station is consistently negative and significant across most specifications,

although becomes statistically 0 when a radius of 2.75 or 3.0 is used. Interestingly, the coeffi-

cient on adjacent treatment is negative and significant when adjacent treatment is defined as

a bikeshare station within a small distance of the block group. This effect becomes smaller

and eventually insignificant when the definition of treatment is based on the existence of a
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station at a larger and larger distance. These estimates suggest that previously discussed

coefficients on Station Adj and Station Kadj may be capturing the combined negative im-

pact of treatment in close proximity and a positive effect of treatment at slightly farther

distances. The impact of nearby stations is seemingly confounded by a definition of adjacent

treatment based only on the boundaries of blocks and block groups.

7.5 Robustness Checks

We conduct a number of robustness checks to explore alternative possibilities that may

explain our results. Each of the following specifications build off of the second matching

specification and we focus on our preferred specification, controlling for stations in adjacent

block groups. In general, model estimates are consistent throughout.

To address potential confounding variables, we run a simple falsification test. We estimate

the model on observations prior to program implementation and assign treatment status

based on whether the block group is treated with a bikeshare station in the future. In Table

A1, results show no significant impact of a station. In addition, we achieve strong covariate

balance in this specification. Similarly, to avoid any confounding variables related to removal

of bikeshare stations, we re-estimate our model with the exclusion of treated block groups

that had stations established and then removed. Regression results, in Table A2, are nearly

identical to our previous estimates.

Next, we consider the possibility that drivers may react to changing traffic conditions by

substituting towards different time periods. This is particularly important in the context

of results from Lawell et al. (2016), in which intertemporal substitution due to driving re-

strictions leads to an increase in emissions. If this were the case, some time periods may

experience an increase (or a smaller decrease) in congestion. We divide our sample into four

subsamples based on the four one-hour-periods in our data and estimate a separate regression

for each period. Results are reported in Table A3 for the specification that controls for bike-

share stations in adjacent block groups. Coefficients indicate a congestion-reducing impact

of a bikeshare station, though the impact is of statistically significantly greater magnitude

later in the morning. For the later two time periods, the estimated Station coefficients are

−0.0537 and −0.0495, respectively. For the earlier time periods, the estimated Station coef-

ficients are −0.0228 and −0.0377, respectively. Thus we cannot rule out the possibility that

drivers are substituting towards earlier times, but such a mechanism does not outweigh the

effect of a bikeshare station.

Another potential issue in our analysis is that a block group’s reference speed, which is

used to calculate congestion via equation (1), changes over time. The standard deviation of
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reference speed has a mean of 1.32 over road segments, with the 20th and 80th percentiles

equal to 0.47 and 1.91, respectively. If the change in reference speed over time is related to

treatment, the relationship between treatment and congestion may be misidentified. Still,

the change in reference speed over time is important to capture other trends in traffic pat-

terns. To address this issue, we examine changes in reference speed for each road segment.

We fit a trend line for each road segment and observe that the slope of this trend line is

positive for 65%, negative for 29%, and flat for the remaining observations. Importantly, the

distribution of trend line slopes is nearly identical for road segments in control and treatment

block groups, and we find a correlation between Station and slope of the trend line to be

0.013. We can therefore conclude that changes in the reference speed are independent of

treatment. To further examine this issue, we estimate our model using observed speed as

the dependent variable, rather than congestion. The coefficient on Speed is positive and

significant, suggesting that the previously discussed reduction in congestion is the effect of

increases in speed. Full results for regressions with Speed as the dependent variable are

reported in Table A4.

Finally, we examine our use of a caliper equal to 0.05 standard deviations to determine the

degree to which the somewhat arbitrarily chosen caliper size may influences our estimates.

We report sensitivity analysis for our preferred specification that controls for stations in

adjacent block groups. We re-estimate the model with matched samples based on a caliper

ranging from 0.01 to 0.10 standard deviations, using both matching specifications. Coefficient

estimates on Station, along with standard errors, are shown in Table A5. We present results

for the second matching specification, which includes socioeconomic variables, pre-treatment

congestion, and public transportation variables. Estimates of the congestion impact of a

bikeshare station range from −3.04%, when using a relatively large caliper equal to 0.10, to

−4.8% when a caliper of 0.01 standard deviations is employed, though they are fairly stable

in terms of identifying a congestion-reducing effect of a bikeshare station.

7.6 Heterogenous Treatment Effects

An extension of our empirical model examines whether the impact of a bikeshare station on

congestion is uniform across congestion levels. To do so, we use quantile regression in which

the marginal impact of a bikeshare station varies with the congestion quantile. The propen-

sity matching approach discussed earlier is primarily focused on matching the conditional

expectation of the dependent variable, which fits well with a least squares regression of our

linear equation. Still, Kolmogorov-Smirnov tests in the earlier covariate balance discussion

suggest that the distributions, rather than simply the means, are matched well. Thus we are
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confident in applying quantile regression to our matched samples.

Given our panel data set, we follow the empirical specification of Canay (2011),

QlnCong(τ |X) = Stationjhdmtβ(τ)+Station AdjjhdmtβAdj(τ)+γRaind+δj+νh+µm+υt, (6)

where Qy(τ |X) indicates the τ th conditional quantile of variable y, conditional on the design

matrix X. This is nearly identical to Canay (2011), except that we add time fixed effects

in addition to spatial fixed effects. The concept, however, remains the same in that time

and location level effects are independent of the congestion quartile. Heterogeneity exists

only in the impact of a bikeshare station. The method developed by Canay (2011) finds

consistent estimates of the β parameter that can used to estimate fixed effects. In a second

step, the dependent variable is transformed by calculating deviations from fixed effects. The

transformed variable becomes the dependent variable for quantile regression to estimate

the quantile functions β(τ) and βAdj(τ). We also estimate equation (6) with a βKAdj(τ) to

correspond with our earlier specification.

We fit conditional quantile functions for nine congestion deciles, using our second match-

ing specification. Coefficient estimates with 95% confidence interval bounds from quantile

regression are plotted in Figure 7. The two sets of confidence intervals for each point repre-

sent different standard error cluster definitions.20 The horizontal dashed line is drawn at the

coefficient estimate, −0.0404, from the linear regression model. We find that the congestion-

reducing effect is concentrated at higher levels of congestion. The impact of a bikeshare

station ranges from having a negative impact on congestion of approximately −3%, with

a steady increase in the magnitude of the effect as congestion increases. For block groups

that have high levels of congestion, however, bikeshare stations appear to reduce congestion

upwards of −5.4%. Estimates are highly significant in both cluster specifications.

Coefficient results are intuitively satisfying. Given our congestion measure, low levels of

congestion likely indicate a lower bound at which traffic flows freely since a further reduction

in congestion would be generated by an increase in observed speed. Therefore, we may not

expect to see as much of a congestion-reducing impact. A statistically significant congestion-

reducing impact of bikeshare stations is stronger in congested areas, as there is considerable

opportunity to reduce congestion through the availability of alternative transportation.

20Standard errors are calculated using a bootstrap method, following Krinsky and Robb (1986), using
1000 simulations.
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8 Discussion

In general, coefficient estimates from matched samples imply a causal link between the pres-

ence of bikeshare stations and congestion reduction. Given evidence of improved covariate

balance in several matching models, our regression results suggest that there is self-selection

of block groups into treatment. The FEPD estimates are biased by observations of bikeshare

stations that are placed in high-congestion areas, thus generating a positive correlation be-

tween the presence of a station and congestion levels. Matching prevents low-congestion

block groups with no stations from serving as the counterfactual for high-congestion block

groups that are selected into treatment, i.e. have a station established. Thus coefficients

estimated from matched samples present a more accurate estimate of the causal impact of

bikeshare stations, and we see considerable evidence that bikeshare stations are effective

at reducing congestion in their immediate areas. In the context of extremely large costs

of congestion estimated by Schrank et al. (2012), even a small reduction in congestion of

approximately 4% generates considerable welfare improvement.

An examination of the adjacency coefficients relative to those on Station in our baseline

model suggests the possibility of other important effects of the presence of bikeshare stations.

However, further analysis reveals that these coefficient estimates could be the result of two

mechanisms. First, our matching approach seeks to estimate a causal effect of treatment,

where treatment is defined as a bikeshare station in a particular location. This leads to a less

than ideal identification strategy for the impact of stations in neighboring locations. While

a modified matching technique suggests no effect of nearby stations, we are less confident

in estimates of the direct treatment effect due to a less restricted control group. A second

explanation for our baseline findings related to adjacent treatment is a simplified definition of

adjacent treatment based on treatment in a bordering locality. Due to considerable variation

in the geographic size and shape of census block and block groups, this creates only a rough

approximation of the spatial distribution of stations. A more precise definition of nearby

bikeshare stations reveals a congestion-decreasing effect of both treatment and adjacent

treatment.

Our estimated causal effects can be used to calculate rough estimates of the benefits that

accrue to commuters due to the bikeshare program. Consider a 4% reduction (from our

baseline estimates) in traffic congestion among the 19.7% of block groups that have a bike-

share station. This would reduce annual congestion costs for Washington area automobile

commuters by approximately $57 per commuter, and total costs by $182 million (Schrank

et al., 2015). This figure represents the private economic benefits that accrue to commuters

through shorter travel times and reduction of wasted fuel. In terms of social benefits, a 4%
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reduction in traffic congestion for our study area would imply an annual benefit of roughly

$1.28 million from reductions in congestion-induced CO2 emissions.21 These estimates, how-

ever, ignore any local environmental benefits from improved air quality through, for example,

reduced NOx emissions. Further, these numbers also ignore private cost-savings from mode-

switching and any health benefits that may accrue to bicycle commuters. Thus, the true

monetary benefits are potentially much greater than the back-of-the-envelope statistics re-

ported here. We focus only on the direct impact of a bikeshare station on the block group

in which it is located, ignoring any impact on surrounding areas. Though our baseline mod-

els show a congestion-increasing impact of treatment in adjacent areas, subsequent analysis

demonstrates no impact of bikeshares in surrounding areas or a further congestion-decreasing

effect, in which case the calculations above can be interpreted as conservation estimates.

Overall, there appear to substantial private and public economic benefits for urban com-

munities from adopting bikesharing infrastructure. Importantly, these aggregate numbers

compare favorably to Capital Bikeshare's total operating costs of $5.8 million in fiscal year

2014, with a 70% cost recovery ratio without government intervention (DDOT, 2015).

9 Conclusion

In this analysis we present causal evidence of the impact of bikeshare programs on traffic

congestion. Though the marginal impact is somewhat small, it translates into considerable

gains in social welfare. Using a unique dataset of city roads, we construct a finely spatially

defined measure of congestion that allows us to examine congestion effects at a disaggregated

geographic level. A panel dataset of half-hourly traffic observations at the census block

group level suggests that the existence of a bikeshare station in a block group reduces traffic

congestion. To control for non-randomness of station locations, we use a propensity score

matching approach to identify the causal effect of the presence of a station. A comparison

of estimates from matched samples to those from the full sample of observations suggests a

selection bias in the placement of bikeshare stations.

Our empirical results indicate that the average treatment effect of the presence of bike-

share stations is an approximately 4% reduction in traffic congestion. Our results are ro-

bust to various caliper values in propensity score matching. Estimates are also robust to

heteroskedasticity and autocorrelation when standard errors are clustered spatially and tem-

porally. Regarding policy, our analysis indicates the effectiveness of a bikeshare program in

reducing congestion.

21This estimate is obtained by multiplying the implied reduction in congestion-induced CO2 emissions
from Eisele et al. (2013) by a social cost of carbon estimate of $41.4, taken from USSCC (2015).
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Our model takes a reduced from approach to identifying a treatment effect. We are

therefore unable to determine the degree to which commuters are substituting away from

driving or away from other modes of public transportation. A statistically significant treat-

ment effect, however, indicates that at least a portion of the increase in bikeshare usage is the

result of substitution away from automobile commuting. Further research should explore the

consumer’s transportation decision to measure transportation substitution patterns. This

point has important implications for policy. If the bikeshare competes with other public

transportation, such as light rail, local governments may be in a position to reallocate fund-

ing towards a bikeshare system that requires considerably less capital investment. Still, if

the bikeshare serves as a complement to existing public transportation, by extending the

network, it could increase the marginal benefits to the consumer of using light rail or bus.

Given evidence for the congestion-reducing impact of the bikeshare program, a structural

model of transportation decisions that can disentangle choice patterns could speak more to

the optimal public funding for various transportation options.
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Table 5: Covariate Balance: Full Sample, Unmatched

Variable Treatment Mean Control Mean Variance Ratio p-value K-S p-value

Med Inc 83695.625 94296.912 1.774 0.052 0.019
Price 3951.310 4687.899 1.331 0.026 0.031
Pop 1554.143 1391.771 0.981 0.100 0.027
Per Educ 0.634 0.540 1.104 0.010 0.016
Per Own 0.450 0.596 1.386 0.000 0.001
House Age 54.982 55.614 0.492 0.410 0.016
Sq mi 0.180 0.192 1.751 0.376 0.087
Cong Mean May 1.257 1.262 1.187 0.440 0.900
Cong SD May 0.153 0.156 1.831 0.438 0.220
Cong Mean Sep 1.250 1.260 1.318 0.352 0.636
Cong SD Sep 0.142 0.156 2.292 0.186 0.228
Dist to Metro 283.424 1055.266 7.285 0.000 0.000
Agg BL Length 691.085 271.081 0.207 0.001 0.000
Bus Count 8.089 5.614 0.258 0.017 0.211

Table 6: Covariate Balance: Matching Specification 1 (Caliper = 0.008)

Variable Treatment Mean Control Mean Variance Ratio p-value K-S p-value

Med Inc 82988.361 89836.714 1.038 0.280 0.797
Price 4166.841 4241.700 1.189 0.456 0.534
Pop 1614.750 1505.171 1.373 0.311 0.344
Per Educ 0.536 0.562 0.662 0.331 0.267
Per Own 0.513 0.533 1.885 0.384 0.368
House Age 55.194 50.114 0.611 0.117 0.017
Sq mi 0.180 0.195 0.666 0.351 0.020
Cong Mean May 1.297 1.267 0.830 0.278 0.348
Cong SD May 0.173 0.163 1.213 0.389 0.536
Cong Mean Sep 1.293 1.250 0.997 0.161 0.077
Cong SD Sep 0.158 0.152 1.193 0.414 0.884
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Table 7: Covariate Balance: Matching Specification 2 (Caliper = 0.008)

Variable Treatment Mean Control Mean Variance Ratio p-value K-S p-value

Med Inc 88770.045 102033.588 1.767 0.235 0.132
Price 4430.313 5246.449 1.160 0.203 0.058
Pop 1461.591 1460.941 0.492 0.499 0.436
Per Educ 0.531 0.582 1.167 0.295 0.647
Per Own 0.587 0.582 2.058 0.475 0.568
House Age 61.773 52.000 1.096 0.029 0.002
Sq mi 0.143 0.252 1.205 0.039 0.001
Cong Mean May 1.275 1.308 0.515 0.293 0.505
Cong SD May 0.152 0.263 4.467 0.046 0.218
Cong Mean Sep 1.275 1.314 1.110 0.264 0.711
Cong SD Sep 0.144 0.250 12.172 0.053 0.122
Dist to Metro 480.331 621.841 1.624 0.144 0.310
Agg BL Length 326.140 207.954 0.630 0.167 0.437
Bus Count 7.682 6.941 0.735 0.334 0.574

Table 8: Presence of Bikeshare Stations: FEPD Unmatched
Sample

1 2 3

Station 0.0009 -0.0034 -0.0007
(cluster on Time) (0.0008) (0.0015)*** (0.0010)
(Two-way cluster) (0.0078) (0.0078) (0.0076)

Station Adj 0.0131
(cluster on Time) (0.0025)***
(Two-way cluster) (0.0078)

Station Kadj 0.0070
(cluster on Time) (0.0015)***
(Two-way cluster) (0.0057)

Adjusted R2 0.4622 0.4623 0.4622
Observations 652,052 652,052 652,052

numbers in parentheses indicate standard errors

*,**, and *** indicate statistical significance at the .1, .05, and .01 levels, respectively
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Table 9: Presence of Bikeshare Stations: Matching Specifica-
tion 1

1 2 3

Station -0.0083 -0.0182 -0.0147
(cluster on Time) (0.0025)*** (0.0031)*** (0.0026)***
(Two-way cluster) (0.0138) (0.0129) (0.0132)

Station Adj 0.0367
(cluster on Time) (0.0034)***
(Two-way cluster) (0.0166)**

Station Kadj 0.0255
(cluster on Time) (0.0026)***
(Two-way cluster) (0.0156)*

Adjusted R2 0.5566 0.5573 0.5569
Observations 105,432 105,432 105,432

numbers in parentheses indicate standard errors

*,**, and *** indicate statistical significance at the .1, .05, and .01 levels, respectively

Table 10: Presence of Bikeshare Stations: Matching Specifi-
cation 2

1 2 3

Station -0.0373 -0.0404 -0.0385
(cluster on Time) (0.0045)*** (0.0050)*** (0.0046)***
(Two-way cluster) (0.0152)*** (0.0158)*** (0.0150)***

Station Adj 0.0263
(cluster on Time) (0.0045)***
(Two-way cluster) (0.0177)*

Station Kadj 0.0096
(cluster on Time) (0.0036)***
(Two-way cluster) (0.0109)

Adjusted R2 0.5029 0.5032 0.5029
Observations 62,246 62,246 62,246

numbers in parentheses indicate standard errors

*,**, and *** indicate statistical significance at the .1, .05, and .01 levels, respectively
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Table 11: Presence of Bikeshare Stations: Matching Specifi-
cation 2 (Include controls that are adjacent to treated obser-
vation.)

1 2 3

Station -0.0285 -0.0288 -0.0289
(cluster on Time) (0.0034)*** (0.0035)*** (0.0034)***
(2-way cluster) (0.0159)* (0.0159)* (0.0157)*

Station Adj 0.0045
(cluster on Time) (0.0025)*
(2-way cluster) (0.0102)

Station Kadj 0.0047
(cluster on Time) (0.0027)*
(2-way cluster) (0.0097)

Adjusted R2 0.5492 0.5492 0.5492
Observations 119,160 119,160 119,160

numbers in parentheses indicate standard errors

*,**, and *** indicate statistical significance at the .1, .05, and .01 levels, respectively

Table 12: Presence of Bikeshare Stations: Treatment within Radius

Radius (km) Station SE Station Adj SE

0.50 -0.0583*** (0.0123) -0.0368 (0.0177)**
0.75 -0.0582*** (0.0123) -0.0437 (0.0173)**
1.00 -0.2256*** (0.0323) -0.2138 (0.0333)***
1.25 -0.1149*** (0.0100) -0.0916 (0.0216)***
1.50 -0.0647*** (0.0070) -0.0477 (0.0230)**
1.75 -0.0647*** (0.0070) -0.0410 (0.0227)*
2.00 -0.0648*** (0.0070) -0.0389 (0.0238)
2.25 -0.0649*** (0.0070) -0.0281 (0.0243)
2.50 -0.0649*** (0.0070) -0.0281 (0.0243)
2.75 0.0018 (0.0270) 0.0485 (0.0415)
3.00 0.0015 (0.0269) 0.0676 (0.0598)

*,**, and *** indicate statistical significance at the .1, .05, and .01 levels, respectively
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Figures

Figure 1: Trends in number of Capital Bikeshare trips and number of stations in use between
October 2010 and December 2012
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Figure 2: Dedicated bicycle lanes
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Figure 3: Bikeshare Trips (departures and arrivals)
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Figure 4: Census Block Groups with Road Midpoints
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Figure 5: Census Block Groups with Bikeshare Stations and Metrorail Stations
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Figure 6: Congestion Trend: Treated vs. Control Block Groups
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Figure 7: Quantile Regression: Station Coefficients (Control for Neighboring Block Groups)
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Appendix

Table A1: Presence of Bikeshare Stations: Pre-Treatment
Falsification Test

1 2 3

Station 0.0599 -0.0119 0.0135
(cluster on Time) (0.0137)* (0.0162) (0.0202)
(2-way cluster) (0.0663) (0.0539) (0.0363)

Station Adj 0.0723
(cluster on Time) (0.0274)**
(2-way cluster) (0.0716)

Station Kadj 0.0633
(cluster on Time) (0.0332)*
(2-way cluster) (0.0835)

Adjusted R2 0.1181 0.1182 0.1213
Observations 15,829 15,829 15,829

numbers in parentheses indicate standard errors

*,**, and *** indicate statistical significance at the .1, .05, and .01 levels, respec-

tively
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Table A2: Presence of Bikeshare Stations: Exclude BGs with
Removal

1 2 3

Station -0.0379 -0.0409 -0.0390
(cluster on Time) (0.0046)*** (0.0050)*** (0.0047)***
(2-way cluster) (0.0152)** (0.0158)** (0.0150)**

Station Adj 0.0251
(cluster on Time) (0.0045)***
(2-way cluster) (0.0172)

Station Kadj 0.0092**
(cluster on Time) (0.0035)
(2-way cluster) (0.0109)

Adjusted R2 0.5024 0.5027 0.5025
Observations 62,246 62,246 62,246

numbers in parentheses indicate standard errors

*,**, and *** indicate statistical significance at the .1, .05, and .01 levels, respectively

Table A3: Presence of Bikeshare Stations: Time Subsamples

6:00 - 7:00 A.M. 7:00 - 8:00 A.M. 8:00 - 9:00 A.M. 9:00 - 10:00 A.M.

Station -0.0228 -0.0377 -0.0537 -0.0495
(cluster on Time) (0.0038)*** (0.0079)*** (0.0018)*** (0.0072)***
(2-way cluster) (0.0119)* (0.0139)** (0.0216)** (0.0212)**

Table A4: Presence of Bikeshare Stations: Dependent Vari-
able Speed

1 2 3

Station 0.0183 0.0203 0.0188
(cluster on Time) (0.0042)*** (0.0046)*** (0.0042)***
(2-way cluster) (0.0084)** (0.0088)** (0.0086)**

Station Adj -0.0171
(cluster on Time) (0.0039)***
(2-way cluster) (0.0097)*

Station Kadj -0.0038
(cluster on Time) (0.0021)*
(2-way cluster) (0.0071)

Adjusted R2 0.7121 0.7121 0.7121
Observations 59,929 59,929 59,929

numbers in parentheses indicate standard errors

*,**, and *** indicate statistical significance at the .1, .05, and .01 levels, respectively
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Table A5: Caliper Robustness

Caliper Size Coef. SE (Time Cluster) SE (Two-Way Cluster)

0.010 -0.04868 (0.0106)*** (0.0242)**
0.015 -0.04174 (0.0075)*** (0.0195)**
0.020 -0.02737 (0.0052)*** (0.0181)*
0.025 -0.03329 (0.0044)*** (0.0171)**
0.030 -0.04051 (0.0053)*** (0.0165)***
0.035 -0.04051 (0.0053)*** (0.0165)***
0.040 -0.04051 (0.0053)*** (0.0165)***
0.045 -0.03985 (0.0049)*** (0.0159)***
0.050 -0.04042 (0.0050)*** (0.0158)***
0.055 -0.04042 (0.0050)*** (0.0158)***
0.060 -0.03729 (0.0050)*** (0.0162)**
0.065 -0.03425 (0.0049)*** (0.0164)**
0.070 -0.03425 (0.0049)*** (0.0164)**
0.075 -0.03583 (0.0050)*** (0.0166)**
0.080 -0.03358 (0.0049)*** (0.0166)**
0.085 -0.03274 (0.0047)*** (0.0166)**
0.090 -0.03035 (0.0045)*** (0.0168)**
0.095 -0.03035 (0.0045)*** (0.0168)**
0.100 -0.03035 (0.0045)*** (0.0168)**
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